Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.

نویسندگان

  • Jeerus Sucharitakul
  • Thanawat Phongsak
  • Barrie Entsch
  • Jisnuson Svasti
  • Pimchai Chaiyen
  • David P Ballou
چکیده

p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). HPAH is composed of two proteins: a flavin mononucleotide (FMN) reductase (C1) and an oxygenase (C2). C1 catalyzes the reduction of FMN by NADH to generate reduced FMN (FMNH-) for use by C2 in the hydroxylation reaction. C1 is unique among the flavin reductases in that the substrate HPA stimulates the rates of both the reduction of FMN and release of FMNH- from the enzyme. This study quantitatively shows the kinetics of how the C1-bound FMN can be reduced and released to be used efficiently as the substrate for the C2 reaction; additional FMN is not necessary. Reactions in which O2 is rapidly mixed with solutions containing C1-FMNH- and C2 are very similar to those in which solutions containing O2 are mixed with one containing the C2-FMNH- complex. This suggests that in a mixture of the two proteins FMNH- binds more tightly to C2 and has already been completely transferred to C2 before it reacts with oxygen. Rate constants for the transfer of FMNH- from C1 to C2 were found to be 0.35 and >or=74 s-1 in the absence and presence of HPA, respectively. The reduction of cytochrome c by FMNH- was also used to measure the dissociation rate of FMNH- from C1. In the absence of HPA, FMNH- dissociates from C1 at 0.35 s-1, while with HPA present it dissociates at 80 s-1; these are the same rates as those for the transfer from C1 to C2. Therefore, the dissociation of FMNH- from C1 is rate-limiting in the intermolecular transfer of FMNH- from C1 to C2, and this process is regulated by the presence of HPA. This regulation avoids the production of H2O2 in the absence of HPA. Our findings indicate that no protein-protein interactions between C1 and C2 are necessary for efficient transfer of FMNH- between the proteins; transfer can occur by a rapid-diffusion process, with the rate-limiting step being the release of FMNH- from C1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii.

p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH- (C2). We report detailed transient kinetics studies at 4 degrees C of the reaction mechanism of C2.C2 binds rapidly and t...

متن کامل

The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.

p-Hydroxyphenylacetate (HPA) hydroxylase (HPAH) from Acinetobacter baumannii catalyzes hydroxylation of HPA to form 3,4-dihydroxyphenylacetate. It is a two-protein system consisting of a smaller reductase component (C(1)) and a larger oxygenase component (C(2)). C(1) is a flavoprotein containing FMN, and its function is to provide reduced flavin for C(2) to hydroxylate HPA. We have shown here t...

متن کامل

Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.

p-Hydroxyphenylacetate hydroxylase from Acinetobacter baumannii is a two-component system consisting of a NADH-dependent FMN reductase and a monooxygenase (C2) that uses reduced FMN as substrate. The crystal structures of C2 in the ligand-free and substrate-bound forms reveal a preorganized pocket that binds reduced FMN without large conformational changes. The Phe-266 side chain swings out to ...

متن کامل

Studies on the oxidative half-reaction of p-hydroxyphenylacetate 3-hydroxylase.

The oxidative half-reaction of the two-protein enzyme, p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas putida, has been studied by absorbance stopped-flow techniques. The formation of three flavin-oxygen intermediates, the anionic and protonated forms of the flavin hydroperoxide (intermediates I and I) and the hydroxyflavin (intermediate III), was observed during the course of the oxygen ...

متن کامل

Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase.

4-Hydroxyphenylacetate 3-hydroxylase (HpaB and HpaC) of Escherichia coli W has been reported as a two-component flavin adenine dinucleotide (FAD)-dependent monooxygenase that attacks a broad spectrum of phenolic compounds. However, the function of each component in catalysis is unclear. The large component (HpaB) was demonstrated here to be a reduced FAD (FADH(2))-utilizing monooxygenase. When ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 46 29  شماره 

صفحات  -

تاریخ انتشار 2007